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Abstract
We consider basic equations for a deformed medium including a defect
field on the basis of differential forms. To make our analysis, we extend
three basic equations: (I) an incompatibility equation; (II) the Peach–Köhler
equation; (III) the Navier equation based on the Hodge duality of the deformed
medium. By combining two exterior differential operators, we derive (I) an
incompatibility equation that extends the compatibility equation to include
a defect field. The Hodge dual of the incompatibility equation becomes a
generalized stress function, which includes previously derived stress functions
such as Beltrami’s, Morera’s, Maxwell’s and Airy’s stress functions. By
applying homotopy operators, we extend (II) the Peach–Köhler equation to
include disclinations. In this case, we can define the basic quantities of stress
space by analogy with the monopole theory. By combining exterior differential
operators and star operators, we extend (III) the Navier equation to include a
defect field. In this analysis, we define a Navier operator that is related to the
Laplace operator through Hodge duality. We consider gauge conditions for a
defect field based on the differential geometry of a deformed medium. This
suggests a duality between yielding and fatigue fractures. The gauge condition
in strain space–time is interpreted as basic relations in polycrystalline plastic
deformation.

PACS numbers: 91.60.Ba, 02.40.−k, 11.10.−z, 11.15.−q, 61.72.−y

1. Introduction

A differential geometrical description of a deformed medium including a defect field was
formulated by Kondo in 1952 [1]. Since then, this mathematical approach has been developed
on the basis of Riemann–Cartan geometry [2–5] and applied in several fields such as the
earth sciences [6, 7]. Following Kröner [3], we call this field the continuum theory of defects
(CTD). The best known differential geometrical description of a physical phenomenon is the
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general theory of relativity, in which the gravitational potential is chosen as the space–time
metric. In the CTD, there are two kinds of space–time—with different choices of metric—
which describe a deformed medium [8–15]: one is called the strain space–time, for which the
velocity distortion is chosen as the metric, and the other is called the stress space–time, for
which the stress function potential is chosen as the metric.

Our previous study gave a combined analysis of these two space–times from the
viewpoint of Hodge duality and derived several four-dimensional equations for defect fields
in a systematic way [15]. For the analysis, we used a differential form and showed that
the exterior differential operator can be used to derive continuity and kinematic equations
for a defect field; we also showed that the Hodge star operator can be used to derive
constitutive equations for a defect field [15]. Although the equations derived in [15] provide
the basis for the CTD, they are inadequate for analysing applied physics problems such
as yielding, fatigue fracturing and polycrystal plastic deformation. Hence, we attempt to
derive/extend several practical equations: an incompatibility equation [3, 16, 17], the Peach–
Köhler equation [18], the generalized Navier (and Laplace) equation [19] and the Golebiewska
gauge conditions [4,20,21,33]. This is the main purpose of this paper. Moreover, we consider
the relationship between the kind of equation used in the CTD and the type of corresponding
operator in differential form.

This paper is structured as follows. In section 2, we show concisely how ordinary operators
in differential form can be used to derive the basic equations in the CTD. In section 3, we
derive an incompatibility equation and a generalized stress function by combining two exterior
differential operators. In section 4, we derive Burgers and Frank vectors [22, 23] by using
homotopy operators. Moreover, we consider the Peach–Köhler equation for disclinations. In
section 5, we derive a Navier equation including the effect of defects by combining exterior
differential operators and star operators. In section 6, we derive a harmonic equation for a
defect field by using Laplace operators. For this derivation, we use the geometric expressions
of the CTD [4]. These expressions naturally lead to Golebiewska gauge conditions in section 7.
Section 8 is devoted to a discussion, in which we consider the mechanical interpretation of
the Golebiewska gauge from the viewpoint of Kondo–Minagawa gauge theory [24] and the
Taylor–Bishop–Hill (TBH) model [25, 26].

2. Continuity, and kinematic and constitutive equations

In this section, we give concisely the basic equations in the CTD based on [15]. Let
{x1, x2, x3, x4} be the Cartesian coordinates. In this study, we set x4 = ct = (E/ρ)1/2t ,
where t is the time variable, E is the elastic modulus and ρ is the density of mass [27]. The
oriented volume element is given by dV = dx1 ∧ dx2 ∧ dx3, where the symbol ∧ denotes the
wedge product. The oriented surface element is given by the inner product: dsA = 〈∂A, dV 〉,
where the index takes the values 1–3. The (3 + 1)-dimensional exterior differential operator is
given by d = ds + dt ∧ ∂t , where subscript s refers to pure space differentiation and subscript
t to time differentiation. The p-form is denoted by �p.

Let B and S be the strain and stress space–time, respectively. The quantities in the two
spaces are summarized in tables 1 and 2. The most obvious difference between B and S

is that the quantities in B such as strains, dislocations and disclinations are visible, while
the quantities in S such as momentum, angular momentum and stresses are invisible. The
continuity and kinematic equations in B are given by [4]

dAi = �i, d�i = 0, (1)

Ai = dBi + Ki, �i = dKi. (2)
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Figure 1. Hodge duality of a deformed medium including a defect field (after [15]). The key
to the line types is as follows: →: �p → �p+1 (continuity and kinematic equations); ——:
�p → �4−p (constitutive equations).

Table 1. Quantities in strain space–time: B (after [15]).

Time-like components Space-like components

Distortion–velocity 1-form: Velocity 0-form: Distortion 1-form:
Bi = vi dt + βi vi βi = βiA dxA

Bend–twist–spin 2-form: Spin 1-form: Bend–twist 2-form:
Ki = ωi ∧ dt + κi ωi = ωiA dxA κi = κiA dsA

Dislocation 2-form: Dislocation current 1-form: Dislocation density 2-form:
Ai = I i ∧ dt + αi I i = I iA dxA αi = αiA dsA

Disclination 3-form: Disclination current 2-form: Disclination density 3-form:
�i = J i ∧ dt + θi J i = J iA dsA θi = ϑi dV

S can also be described by the following continuity and kinematic equations [8–15]:

dMi = Si, dSi = 0, (3)

Mi = dF i + Ci, Si = dCi. (4)

Continuity and kinematic equations in each space–time can be derived using the exterior
differential operator d : �p → �p+1 described above. On the other hand, the constitutive
equations can be derived using the linear Hodge operator ∗ : �p(B) → �4−p(S) as
follows [15]:

Si =
√
Eρ ∗Bi, Mi = e

√
Eρ ∗Ki,

Ci = f
√
Eρ ∗Ai, F i = g

√
Eρ ∗�i.

(5)

Equations (1)–(5) are four-dimensional expressions of previously derived basic equations in
continuum mechanics (including the CTD). For instance, the first equation of (2) can be divided
into time-like and space-like components: αi = dsβi + κi , I i = dsvi − ∂tβi +ωi . The former
is the well-known basic equation in the CTD [3] and the latter is Orowan’s equation with spins.
The time-like components of (3) are given by ∂tai + dsmi = σ i and ∂tP i−dsσ i = 0. They are
the conservation laws of angular momentum and momentum, respectively. The first equation
of (5) can also be divided into time-like and space-like components: pi = ρvi , σ iA = EβiA.
The former is the constitutive equation for moments and the latter is the extended Hooke’s
law in the total strain theory of plasticity [28]. The results described above are summarized
graphically in figure 1.
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Table 2. Quantities in stress space–time: S (after [15]).

Time-like components Space-like components

Stress function 1-form Stress function 0-form: Stress potential 1-form:
F i = φi dt + γ i φi γ i = γ iA dxA

Couple-stress function 2-form: Couple-stress function 1-form: Couple-stress potential 2-form:
Ci = ci ∧ dt + δi ci = ciA dxA δi = δiA dsA

Couple-stress 2-form: Couple-stress 1-form Angular momentum 2-form:
Mi = mi ∧ dt + ai mi = mi

A dxA ai = aiA dsA

Stress 3-form Stress 2-form: Momentum 3-form:
Si = σ i ∧ dt + P i σ i = σ iA dsA P i = pi dV

3. The incompatibility equation and the generalized stress function

All the continuity, kinematics and constitutive equations can be derived using the theory of
differential forms in section 2. However, we did not derive a compatibility equation in strain
space, which is necessary for strain components to have solutions of displacement components.
Moreover, this compatibility equation should be enhanced to include the incompatibility tensor
when defects exist [3,16,17]. In this section, we treat three-dimensional space in order to derive
compatibility and incompatibility conditions in strain space. The incompatibility equations in
strain space are given by the relation between the disclination densities and the distortions [3]:

θ i = θ i(βi). (6)

To derive this relation, we define the new disclination density by acting with the operator ds
from the right:

�
θi = αi

←
ds (7)

where the symbol ‘←’ means acting from the right. Substitution of the space-like components
of (2) into this equation leads to

ηi = dsβ
i
←
ds (8)

where ηi :=
�
θi − κi

←
ds is the incompatibility tensor in the case of no extra matter except for

dislocations and disclinations [17]. Now, one-to-one correspondences between operators in
differential forms and in vector analysis are given by d�0 ↔ grad�0, d�1 ↔ curl�1 and
d�2 ↔ div�2. By analogy with these, we set

d�0
←
d ↔ grad�0

←
grad, d�1

←
d ↔ curl�1

←
curl d�2

←
d ↔ div�2

←
div . (9)

Note that acting twice from one side is not generally equivalent to acting once from each side

(curl curl(· · ·) = curl(· · ·)
←

curl and so on). In three-dimensional space, the 4-form d�2
←
d is

identically zero. Since βi ∈ �1, equation (8) corresponds to

η = curl β
←

curl . (10)

This is called the incompatibility equation in terms of strains [3, 16, 17], which satisfies
the condition (6). In the particular case of η = 0, components of (10) are given by
εiklεjmn∂k∂mβln = 0. This is the well-known St Venant compatibility equation, which means
that the topology of the continuum is invariant under elastic deformations [3]. However, when
the deformation accompanies anelastic deformations such as emergences of defect fields, the
topology of the continuum is not invariant, so the left-hand side of (10) is not zero.
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Next, we rewrite the incompatibility equations (8) (or (10)) by using the constitutive
equations (5) in three-dimensional space:

σ ′i = dsφ
′i←ds + c′i

←
ds (11)

where we have introduced the dual stress space; that is, φ′i is a dual stress function 1-
form, c′i is a dual couple-stress function 2-form and σ ′i is a dual stress 3-form. Because

dsds = 0 and the 4-form dsc′i
←
ds is identically zero in three-dimensional space, this equation

gives dsσ ′i = 0 which is a continuity equation for stress. The vector analysis expression

of (11) is σ ′ = curl φ′
←

curl +c′
←
div, which includes the previous stress functions as described

below [16]. In the particular case of c′ = 0, this corresponds to the equation for the
Beltrami stress function: σij = εiklεjmn∂k∂mφln. The nondiagonal components of Beltrami
stress functions are Morera stress functions and the diagonal components are Maxwell stress
functions: σij = δij ∂k∂kφ − ∂i∂jφ, where φ := φmm. Moreover, in the two-dimensional
case the Maxwell stress functions are the well-known Airy stress functions: σ11 = ∂2∂2φ,
σ22 = ∂1∂1φ and σ12 = σ21 = −∂1∂2φ. If we define the incompatibility tensor in stress

space as ηi(S) := σ ′ − c′
←
div, equation (11) corresponds to (10). Therefore, the compatibility

equation in stress space is given by εiklεjmn∂k∂mφln = 0.

4. The Peach–Köhler equation and basic quantities

The force acting on a dislocation field is described by the Peach–Köhler equation, which is
useful for solving various problems associated with deformations around dislocation lines [18].
However, this equation ignores the effect of the disclination field. Thus, in this section, we
consider the equation for the force acting on a disclination field based on Amari’s energy
potential approach [14]. The Peach–Köhler equation is given by the product of the stress and
Burgers vectors. Burgers vectors are considered basic quantities in defects dynamics [21]. In
the analysis of basic quantities, a linear homotopy operator H plays an important role; it has
the following properties [29]:

(I) H : �p → �p−1 for p > 0 and H : �0 → 0;
(II) dH + Hd = identity on �p, p > 0;

(III) HH = 0;
(IV) HdH = H, dHd = d.

By property (II), an arbitrary differential form X can be divided into two parts:

X = Xe + Xa (12)

with

Xe := dHX and Xa := HdX. (13)

Xe is called the exact part of X, which is the kernel for d because dXe = 0. Xa is called the
anti-exact part of X, which is the kernel for H because property (III) shows that HXa = 0.
Xa = HdX and (IV) shows that dX = dXa which means that a closed form (dX = 0) is exact
(Poincaré lemma).

Burgers vectors bi(B) are defined by the integral of distortions for the Burgers circle [30].
From Stokes’s theorem and the property of the homotopy operator (II), this integral can be
written as

bi(B) =
∫
∂S

βi =
∫
∂S

(dHβi + Hdβi) =
∫
S

d(dHβi + Hdβi) =
∫
S

dH dβi. (14)
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In a similar fashion, we can define Frank vectors f i(B) as the integral of the bend–twists for
the Frank surface:

f i(B) :=
∫
∂V

κi =
∫
V

dH dκi. (15)

Using the space-like components of (2), relations (14) and (15) become well-known forms in
the CTD [20, 21]:

bi(B) =
∫
S

(αi − κi), (16)

f i(B) =
∫
V

θ i . (17)

These relations show that basic quantities in strain space can be derived by the integration of a
dislocation density 2-form and a disclination density 3-form. Now, in stress space, a couple-
stress and a stress correspond to a dislocation and a disclination, respectively (see section 2).
Thus, by analogy with (16) and (17), we integrate a couple-stress 1-form and a stress 2-form
as follows: ∫

x

(mi − ci) = φi := bi(S), (18)
∫
S

σ i =
∫
∂S

ci := f i(S), (19)

where we use Stokes’s theorem, equations (3) and (4) in three-dimensional space. The surface
integral of the stress corresponds to an exerted force. Therefore, equations (18) and (19) show
that stress functions and exerted forces are basic quantities in stress space just as Burgers and
Frank vectors are basic quantities in strain space. In view of the constitutive equations (5) in
three-dimensional space, these basic quantities are not independent of each other.

Next, we derive the force acting on a defect field on the basis of (16). Let us define
the potential energy of distortions: U(β) := βi ∧ ∗sβi = E−1βiA ∧ σ iA dV , where
∗s : �p → �3−p and we use (5). Since U(β) ∈ �3 and ∗sdV = 1, we define the potential
energy 0-form as U ′(β) := E−1βiA ∧ σ iA. In this case, the force acting on a dislocation field
is given by

F(β) = −dsU
′(β) = −E−1(αiA − κiA) ∧ σ iA (20)

where we use (2) and (3). This corresponds to the Peach–Köhler equation [18], because (16)
shows that this force 1-form is equivalent to the wedge product of Burgers vectors and the
stress. In a similar fashion, we have the force acting on a disclination field:

F(κ) = −dsU
′(κ) = −(eE)−1(ϑiA ∧mi

A + κiA ∧ σ iA) (21)

where U ′(κ) := (eE)−1κiA ∧ mi
A. When κiA ∧ σ iA = 0, this equation corresponds to

Amari’s equation [14]. From (20) and (21), we obtain the force acting on the dislocations
and disclinations: F(β) + F(κ) = −E−1(αiA ∧ σ iA + ϑiA ∧ mi

A), where we applied the
normalization e = 1.

5. The Navier equation and the defect field

In the theory of elasticity, the deformed medium can be described by a Navier equation:

Eijkl∂j ∂(luk) − ρ∂t∂tui = FB
i (22)

where ∂(luk) := (∂luk +∂kul)/2 and FB
i is a body force. The Navier equation can be derived by

combining two equations, i.e., the equation of motion: ∂jσij +FB
i = ∂tpi and the constitutive
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equations: σij = Eijklβkl and pi = ρvi . Moreover, we often use geometric relations,
βkl = ∂luk and vi = ∂tui , to derive the well-known form of the Navier equation (22). In
the CTD, the equation of motion and the constitutive equations are extended like the second
equation of (3) and the first equation of (5), respectively. Moreover, the geometric relation is
extended to include the anti-exact part: Bi = dui + HdBi , where ui := HBi is an ordinary
displacement 0-form. Therefore, the Navier equation in the CTD (without a body force) can
be derived by combining the second equation of (3), the first equation of (5) and the extended
geometric relations:√

Eρ d∗dui = −
√
Eρ d∗HdBi. (23)

Equation (22) describes the displacement field due to the body force. On the other hand,
the right-hand side of (23) is the anti-exact part of the distortion, which causes a dislocation
field [21]. Therefore, equation (23) can be recognized as the Navier equation for a displacement
field due to dislocations. In a similar fashion, we can derive the Navier equation for a rotational
displacement field ri := HKi as follows:

e
√
Eρ d∗dri = −e

√
Eρ d∗HdKi + Si (24)

where we use the first equation of (3), the second equation of (5) and Ki = dri + HdKi .
Because disclinations are caused by the anti-exact part of the bend–twist, HdKi , this equation
describes a displacement field due to disclinations (and stresses).

The results given above can be generalized as in the following analysis. The basic operators
in differential form are exterior differential operators and Hodge star operators, with the derived
kinematic equations and constitutive equations, respectively (see section 2). Thus, we operate
with d and ∗ on an arbitrary p-formX in n-dimensional space to derive generalized kinematic
and constitutive equations:

dX = Y, ∗X = Z, (25)

where Y is a (p + 1)-form and Z is an (n − p)-form. Moreover, we use homotopy operators
to derive generalized geometric relations:

X = dHX + HdX = dx + y,

Y = dHY + HdY = dy,

Z = dHZ + HdZ = dz + HdZ,

(26)

where x := HX, y := HY and z := HZ. The first two relations show that dX = dy
although X = y. This property plays an important role in the gauge theory of defects (see
section 7). The third relation generalizes the geometric relations, such as Bi = dui + HdBi

and Ki = dri + HdKi . By combining (25) and (26), we obtain

NZ = dG, (27)

where N := d∗d andG := (−1)p(n−p) HdX−∗HdZ. Equation (27) is the general form of the
Navier equation—that is, when we recognize z as the ordinary and rotational displacements,
equation (27) corresponds to (23) and (24), respectively. Thus, in this paper, we call N = d∗d
the Navier operator. It is clear that NN = 0, dN = 0 and Nd = 0. In the next section, we
derive the Laplace equation for the defect field by using this operator, N.

6. The Laplace equation for a defect field

In this section, we consider the Laplace equation for a defect field from the viewpoint
of differential geometry. In four-dimensional space, the Laplace operator = is given by
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= = dδ + δd := {d, δ}, where δ := ∗d∗ [31]. It follows from the relation N = d∗d that
dδ = N∗ and δd = ∗N. This means that the Laplace operator is related to the Navier operator
through the Hodge star operator:

= = {N, ∗}. (28)

This relation shows that if arbitrary functionsX satisfy∗X = 0 and NX = 0, they form Laplace
fields: =X = 0. The continuity and constitutive equations (1)–(5) give the Navier equation
for dislocations and disclination fields as follows: N�i = 0, NAi = (g(Eρ)1/2)−1(Mi −Ci),
N∗�i = g−1(f − e)�i and N∗Ai = f −1(Ai − Ki). Therefore, operating with = on the
defect field gives

=�i = {N, ∗}�i = g−1(f − e)�i,

=Ai = {N, ∗}Ai = g−1(fAi − eKi) + f −1(Ai −Ki).
(29)

This shows that the disclination field forms a Laplace field when the coefficients of two
constitutive equations for a 2-form are equivalent (i.e. e = f ) (see figure 1). Moreover,
the disclination field also forms a Laplace field in the particular case where g−1f + f −1 = 0.
Next, we consider the geometrical meaning of the relations among the coefficients.

For this analysis, we use the differential geometrical description of a deformed medium
including a defect field [4]. It shows that the physical quantities in the strain space–time can
be expressed in terms of geometrical objects:

Bi = ψi, Ki = ?ij ∧ ψj , Ai = T i, �i = Ri
j ∧ ψj − ?ij ∧ T j , (30)

where ψi is a dual basis 1-form, ?ij is a connection 1-form, T i is a torsion 2-form and Ri
j is

a curvature 2-form. Therefore, continuity equations (1) can be rewritten as

DT i = Ri
j ∧ ψj and DRi

j = 0 (31)

where D is a covariant exterior differential operator which gives DT i = dT i + ?ij ∧ T j and
DRi

j = dRi
j + ?ik ∧ Rk

j − Ri
k ∧ ?kj . Equations (31) are the first and second Bianchi

identities in the language of differential forms, respectively [31]. Moreover, the kinematics
equations (2) become

T i = Dψi and Ri
j = D?ij (32)

where we use Dψi = dψi + ?ijψj and D?ij = d?ij + ?ik ∧ ?kj . Equations (32) are Cartan
structure equations in the language of differential forms [31]. By analogy with (30), let us
express the physical quantities of the stress space–time in terms of geometrical objects as
follows [15]: F i = ψ ′i , Ci = ?′i j ∧ ψ ′j , Mi = T ′i , Si = R′i j ∧ ψ ′j − ?′i j ∧ T ′j . In this
case, the continuity and kinematics equations in stress space–time (equations (3) and (4)) can
be interpreted geometrically as Bianchi identities and Cartan structure equations in the stress
space–time, respectively. Moreover, constitutive equations (5) can be rewritten as equations
that describe the interaction between geometric objects in the strain space–time and those in
the stress space–time:

R′i j ∧ ψ ′j − ?′i j ∧ T ′j =
√
Eρ ∗ψi,

T ′i = e
√
Eρ ∗(?ij ∧ ψj),

?′i j ∧ ψ ′j = f
√
Eρ ∗T i,

ψ ′i = g
√
Eρ ∗(Ri

j ∧ ψj − ?ij ∧ T j ).

(33)

Here, we consider the particular condition where geometric objects in the strain space–time
are equivalent to corresponding objects in the stress space–time (i.e., ψi = ψ ′i , ?ij = ?′i j ,
T i = T ′i and Ri

j = R′i j ), which means that the geometric structures of the two spaces are
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equivalent. In this case, equation (33) gives g−1f + e−1 = 0 for Eρ = 0. This is equivalent
to the condition that the defect field forms a Laplace field, i.e., e = f and g−1f + f −1 = 0.
Therefore, it is found that the defect field forms a Laplace field in the particular case where
geometric objects in strain and stress spaces are equivalent to each other.

7. Golebiewska gauge conditions

The gauge theory has played the main role in the mathematical description of defect
fields [4, 5, 20, 21, 32–36]. For instance, Edelen and Golebiewska-Lasota have shown that
the classical theory of defects admits a 45-fold Abelian gauge condition that is called the
Golebiewska gauge [4, 20, 21, 33]. Previously the Golebiewska gauge has been studied in the
strain space–time, so we consider a similar condition in the stress space–time on the basis of
the geometrical approach of section 6.

Let us divide ?ij ∧ ψj into an exact part and an anti-exact part: ?ij ∧ ψj =
(?ij ∧ ψj)e + (?ij ∧ ψj)a . From the property of curvatures that measures the failure of
covariant differentials to commute: Ri

j ∧ ψj = DDψi and the Cartan structure equation:
T i = Dψi , we have Ri

j ∧ ψj = d(?ij ∧ ψj) + ?ij ∧ T j . Then, the above relation becomes

d(?ij ∧ ψj)a = Ri
j ∧ ψj − ?ij ∧ T j (34)

where we use that the exact part is the kernel for d—that is, d(?ij ∧ψj)e = 0. Equation (34)
shows that the term Ri

j ∧ψj −?ij ∧T j is zero in the case of (?ij ∧ψj)a = dξ i , where ξ i is
a 1-form. However, (?ij ∧ψj)a is anti-exact, so Hdξ i = ξ ia = 0, ξ i = ξ ie and dξ i = dξ ie = 0.
Then, we have (?ij ∧ ψj)a = 0. In this case, ?ij ∧ ψj = (?ij ∧ ψj)e = dH(?ij ∧ ψj), so
the Cartan structure equation T i = Dψi becomes

T i = dψ̂ i = d(ψ̂ i
a) (35)

with ψ̂ i := ψi +H(?ij ∧ψj). Equation (35) shows that T i is zero in the case where ψ̂ i
a = dξ ′i ,

where ξ ′i is a 0-form. In a similar fashion, to derive (?ij ∧ψj)a = 0, we can show that ξ ′i is
an exact form and ψ̂ i

a = ψi
a + H(?ij ∧ ψj) = 0. The results given above can be summarized

as follows: T i and Ri
j ∧ ψj − ?ij ∧ T j vanish in the case where ψi

a = −H(?ij ∧ ψj) and
(?ij ∧ψj)a = 0—that is, ψi = ψi

e−H(?ij ∧ψj) and ?ij ∧ψj = (?ij ∧ψj)e. On the basis
of this result, we can show that T i and Ri

j ∧ψj −?ij ∧ T j are invariant under the following
transformations:

ψi → ψi + ψi
e − H(?ij ∧ ψj) and ?ij ∧ ψj → ?ij ∧ ψj + (?ij ∧ ψj)e. (36)

Next, we apply this geometric transformation to the strain and stress space–times.
Recall that quantities in the strain space–time can be expressed in terms of geometrical

objects (see (30)). Therefore, equation (36) can be rewritten as follows: a dislocation 2-form
and a disclination 3-form are invariant under the transformation

Bi → Bi + dHBi − HKi and Ki → Ki + dHKi. (37)

This is called the Golebiewska gauge transformation in the strain space–time, and was derived
first by Edelen [20]. In a similar fashion, the transformations (36) can be rewritten as follows:
a couple-stress 2-form and a stress 3-form are invariant under the transformation

F i → F i + dHF i − HCi and Ci → Ci + Ci
e = Ci + dHCi. (38)
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Following (37), we call (38) the Golebiewska gauge transformation in the stress space–time. It
is easy to show that the kinematics and continuity equations in the strain (or stress) space–time
are also invariant under the transformations (37) (or (38)).

Next, we rewrite the transformations (37) and (38) by using constitutive equations. It
follows from (5) and (38) that couple-stresses and stresses are invariant when dislocations and
disclinations are transformed as follows:

Ai → Ai − (f
√
Eρ)−1 ∗dHCi and �i → �i + (g

√
Eρ)−1 ∗(dHF i − HCi).

(39)

Dislocations and disclinations are also invariant in the case where HCi = dHF i , for which the
transformations (38) are trivial. Conversely, equations (5) and (37) indicate that dislocations
and disclinations are invariant when couple-stresses and stresses are transformed as follows:

Mi → Mi + e
√
Eρ ∗dHKi and Si → Si +

√
Eρ ∗(dHBi − HKi). (40)

Couple-stresses and stresses are also invariant in the trivial case where HKi = dHBi (see (37)).
In the next section, we discuss the mechanical meaning of the gauge transformations (39)
and (40) on the basis of Kondo–Minagawa gauge theory [24] and the TBH model [25, 26].

8. Discussion and summary

In section 2, we showed that two operators d and ∗ play an important role in deriving the basic
equations in the CTD. In the following section, we introduced some new operators in order to
derive other basic equations in the CTD. The results are summarized as follows:

d: continuity and kinematic equations

∗: constitutive equation

d(· · ·)
←
d: incompatibility equation

d∗(· · ·)
←
d: generalized stress function

N: Navier equation

{N, ∗} = =: Laplace equation

where N is the Navier operator defined in section 5. Moreover, we used the homotopy operator
to derive an extended Peach–Köhler equation and the Golebiewska gauge. These results lead
us to a simple conclusion: certain kinds of equations correspond to certain kinds of operators.

In section 4, we consider basic quantities in the CTD such as Burgers vectors and Frank
vectors. It is known that electric charges and Burgers vectors have similar structures [18, 22].
For instance, Burgers vectors are given by integrals of dislocation fields (see (16)) just as
electric charges are given as integrals of electric fields [18]. In the monopole theory, not only
electric charges but also magnetic charges exist [23]. Electric and magnetic fields can be
replaced by using Hodge star operators [37]. On the other hand, the strain space, in which
the Burgers vectors are defined, is also replaced by the stress space by using Hodge star
operators [15]. Therefore, it is found that the magnetic charges correspond to basic quantities
in the stress space such as stress functions (see (18) and (19)). Because the quantities in the
stress space–time are invisible (table 1), we cannot directly observe the basic quantities in the
stress space.

In section 7, we showed that T i and Ri
j ∧ ψj − ?ij ∧ T j are invariant under the

transformations (36). By application of this result to the strain and stress space–times, we
obtained the Golebiewska gauge transformations which were first derived by Edelen in the
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strain space–time [20]. Kinematic and continuity equations in the strain space–time (or stress
space–time) are invariant under the Golebiewska gauge transformations in the strain space–
time (or stress space–time) (see (37) and (38)). On the other hand, the constitutive equations
indicate that quantities in the strain space–time (or stress space–time) are not invariant under the
Golebiewska gauge transformation in its dual space–time, i.e., the stress space–time (or strain
space–time) (see (39) and (40)). According to Kondo and Minagawa [24], transformations of
the type shown by (39) can be physically interpreted as the criterion for yielding. Moreover,
transformations of the type shown by (40) can be physically interpreted as the conditions for
fatigue fracture. These results suggest that yielding and fatigue fracture are related by the
Hodge duality.

In order to derive the transformations (36), we showed that T i and Ri
j ∧ψj − ?ij ∧ T j

vanish under the conditions ψi = ψi
e −H(?ij ∧ψj) and ?ij ∧ψj = (?ij ∧ψj)e. From (30)

and the definitions HBi = ui , HKi = ri , the relations can be rewritten physically: disclination
and dislocation fields vanish under the conditions

Bi = dui − ri and Ki = dri . (41)

The first relation means that total distortions are given by sums of two terms: the gradient of a
displacement and an internal rotation. Now, a similar equation has already been derived in the
TBH model and has been used to study various plastic phenomena within polycrystals, such
as lattice preferred orientation [25, 26]. The basic equation of the TBH model is

BT =
n∑
h

(duh) + ra (42)

where BT is the total distortion, uh gives the displacement field due to each slip system h

and n is the number of slip systems. ra is called the additional rotation, causing the crystal
lattice to rotate within a polycrystal [26]. Recall that relation (41) was introduced in the
first transformation of (36). This implies that the basic relation in the TBH model is another
expression of the Golebiewska gauge in the strain space–time.
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